

Part-II A/2016
Examination:- M.A./M.Sc.

R	0	11	ľ	V	0		٠.		• •	• •			٠.		٠.	٠	٠.		••	•	
	•	•	٠	•	•	•	٠	•	•	•	٠	•	٠	٠	•	٠	٠	٠	•	•	•

Subject: Space Science (New Course)
PAPER: I (Astrophysics and Cosmology)

TIME ALLOWED: 3 hrs. MAX. MARKS: 100

NOTE: Attempt any FIVE questions selecting at least TWO questions from each section. All questions carry equal marks.

Section I

- 1 a. Write a comprehensive note on Cepheid and RR Lyrae stars.
 - b. Explain the H-R Diagram for the classification of stars.
- 2 a. What are Comets? How they are formed?
 - b. Explain the stellar evolution and various stages of a star.
- 3 a. What are the main sequence stars? Explain open and globular clusters of stars.
 - b. Explain structures and characteristics of red giants.
- 4 a. What are Neutron stars? Explain the formation and detection of Neutron stars.
 - b. Explain the difference between Absolute and Apparent Magnitude. Give an Example.

Section II

- 5 a. State and Explain Hubble's law.
 - b. What is CMBR? How it is measure?
- 6 State and Derive the Fluid equation.
- 7 Explain the idea of Expansion of Universe through the eyes of Newton, Einstein and Hubble.
- 8 Explain the following
 - a. Equation of State
 - b. The Friedmann Equation
- 9 State and Explain Cosmological Principle, its Justification and Criticism. Write Cosmological Constant with Equation.

Part-II A/2016 Examination:- M.A./M.Sc.

Roll No.	• • • • • • • • • • • • • • • • • • • •	
•••••		

_Subject: Space Science (Common)

PAPER: II Electromagnetic Waves and Space Plasma (Old Course)

Electrodynamics and Space Plasma (New Course)

TIME ALLOWED: 3 hrs. MAX. MARKS: 100

NOTE: Attempt any FIVE questions, at least TWO questions from each section. All questions carry equal marks.

SECTION-I

- Q.1) a) By using the concept of anti symmetric Tensor obtain the expression for electromagnetic field Tensor.
 b) In free space E(z,t)= E_o Sin ((ωt-βz) j[^] v/m calculate displacement density vector, magnetic flux density and magnetic field intensity .
- Q-2) Discuss Electromagnetic wave propagation techniques for conducting media, Find the values of propagation constant phase constant and wavelength. 20
- Q-3) a) Prove that net inward power flux supplied by the field over the surface S must equal to the time rate of increase of electromagnetic energy inside the volume V plus total ohmic losses with in the volume V.
 - b) In free space $E(z,t)=1.0 \sin(\omega t-\beta z) i^v/m$ show that average power over a circular disc of radius 15.5 m in z-direction is one watt.
- Q.4) What is the concept of electric potential and vector potential. Obtain the Electromagnetic Wave equations in terms of potential 20

SECTION-II

- Q-5) What is Debye shielding? Calculate the Debye length by applying the concept of potential well. 20
- Q-6) Find the drift velocity if plasma particles are under the influence of non-uniform electric field and also discuss physical significance.
- Q-7) Find the dispersion relation for electrostatic electron wave and explain the term involved in it. 20
- Q.-8) Prove that the dispersion relation for Ion acoustic wave is

$$\omega^2 = \underline{K T_e + K T_i} \qquad k^2$$

M

where k is wave number and K is Boltzman constant.

20

Q-9) Discuss the behavior of charge particle in uniform magnetic field and with gravitational field. Discuss the physical significance for both field separately.

A/2016 Part-II Examination: - M.A./M.Sc.

Roll No.	 •••••	

Subject: Space Science (Old & New Course)

PAPER: III (Telecommunication and Satellite Communication)

TIME ALLOWED: 3 hrs.

MAX. MARKS: 100

NOTE: Answer any FIVE questions at least TWO questions from each section. All questions carry equal marks. Draw diagrams where necessary.

Question No. 1:

(20 Marks)

- a) Briefly explain analog and digital communication systems [6] b) What is bandwidth? How it is calculated and what are half-power points? [4] c) What about selectivity and Q factor? [4] d) Incorporate types and uses of RF spectrum.
- Question No. 2:

a) Briefly explain with diagrams.

(20 Marks)

[8]

[6]

- 1. Simplex/ Duplex
- 2. Modulation/ Multiplexing
- 3. Transducer/ Transceiver
- 4. Time/ Frequency Domains
- b) Describe the figures below

[4]

c) An amplifier has an input of 18 mV and an output of 4 V. What is the gain in decibels? d) Discuss briefly why it is common to use modulated high-frequency carriers to broadcast radio and TV signals, rather than sending the signals directly. [4]

Question No. 3:

(20 Marks)

a) What is the resonant frequency of a 2 pF capacitor and a 50 nH inductor?

[3]

Carefully sketch and label the waveform of a 1 MHz carrier which has been amplitude modulated by a 100 kHz sine wave, with a modulation index of 1. Show about 20 cycles of the carrier. [6] When a thunderstorm is approaching, a crackling noise (due to "spikes" of impulsive interference) is often heard in AM radio broadcasts, but not in FM radio broadcasts. Briefly explain this observation. [3] d) Elaborate amplitude modulation techniques and discuss benefits of SSB over DSB. Discuss several possible cons and pros of modulation based on modulation index. **Question No. 4:** (20 Marks) a) Discuss noise-suppression effects of FM. [4] b) Describe Bessel Functions and relate them with Modulation Index and Sidebands. [6] c) Describe balanced modulator and differentiate its types. [5] d) Calculate total attenuation and output voltage. [5] circuit $A_1 = 0.2$ $A_3 = 0.06$ $A_{p} = 0.9$ Section-II **Question No. 5:** (20 Marks) a) Describe and categorize orbits based on mission requirement/ altitude/ inclination. [10] b) Calculate the minimum $\Delta V(s)$ to escape from Earth while a satellite is orbiting in LEO (1000 km) and in HEO (Rp = 6.878 km, Ra = 42.240 km). [6] c) Prove that $\epsilon = -\mu/2a$. [4] **Ouestion No. 6:** (20 Marks) a) A solar day is 24 hrs while a sidereal day = 23 h, 56 min, 4.1 s. Calculate e, v and mean motion (n) for a satellite which always maintains the same position above the Earth. [6]

b) A satellite is in a circular orbit at an altitude of 250 km. It needs to move from its current

c) A space agency wants to place a communication satellite into GEO from a low-Earth parking

d) A rocket is launched vertically from the surface of the Earth with an initial velocity of 10 km/s.

inclination of 13° to 47°. What ΔV does this transfer require?

What maximum height does it reach?

orbit of radius 6570 km. What is the total ΔV and time for this transfer?

[3]

Question No. 7: (20 Marks)

- e) Elaborate i, a, e, and T for Molniya, Tundra and Sun-Synchronous orbits using ground tracks.[6]
- f) Elaborate Satellite Look Angles by diagram(s) and explain how these angles play a role in satellite tracking and satellite visibility. [3]
- g) Describe satellite sub-systems with diagrams.

[11]

Question No. 8: Compute the unknown parameters.

(20 Marks)

Orbit Type	Elliptical	Circular
Eccentricity, e		
Semi-major Axis, a		
Periapsis Distance, R _p		
Semi-latus rectum, p	·	
Specific Mechanical Energy, €		
Distance from Central Body, r		
Orbital Velocity, v	·	
Periapsis Velocity, v _p		
Apoapsis Velocity, va		
Orbital Period, T		
Mean Motion, n		·
Escape Velocity, V _{esc}		

Question No. 9:

(20 Marks)

- a) Which type of satellite orbit(s) provides the best performance for a communications network for each of the following criteria: [10]
 - i. Minimum free space path loss
 - ii. Best coverage of high latitude locations
 - iii. Full global coverage for a mobile communications network
 - iv. Minimum latency (time delay) for voice and data networks
 - v. Ground terminals with little or no antenna tracking required
- b) The FRIIS equation for an RF link is $C = (P_T/4*\pi*R^2)*G_T*A_{eff}$. Compute EIRP and Free Space Loss (Lis).
- c) A moderate rate private network VSAT uplink terminal has transmit power of 10 watts, and both the transmit and receive parabolic antennas have a diameter of 3 m. The antenna efficiency is 55% for both antennas. The satellite is in Geostationary orbit at 12 GHz frequency of operation. Calculate the received power.

Part-II A/2016 Examination: M.A./M.Sc.

Roll	No.	 	

Subject: Space Science (Old & New Course)

PAPER: IV (Space Systems and their Applications)

TIME ALLOWED: 3 hrs.

MAX. MARKS: 100

NOTE: Attempt any FIVE questions. All questions carry equal marks.

Q-1 (a)	Give an overview of Aerospace System and discuss the role of AEROSPACE MANAGEMENT in aerospace industry?	10
(b)	Describe the concept of an OPERATIONAL ORGANIZATION for a Communication satellite?	10
Q-2 (a)	Write a complete note on GEOSTATIONARY ORBIT. What is its significance for a communication satellite?	10
(b)	Write a brief description of SATELLITE COMPOSITION?	10
Q-3 (a)	How the communication of a satellite is affected by SUN'S INTERFERENCE?	10
(b)	How a satellite is injected into its FINAL ORBIT?	10
Q-4 (a)	Calculate the SATELLITE PERIOD, SATELLITE VELOCITY and SATELLITE POSITION while discussing the Satellite Path in space?	10
(b)	What are the different Classical Orbital Elements. Give a brief description of each of them?	10

Q-5	What do you understand by ORBITAL PERTURBATION. What are	20
	the different types of perturbations and what are the Main causes for	
	orbital perturbations?	
Q-6	Explain the full working of GPS calculating the position.	20
	What are its different segments?	
Q-7 (a)	What is a SPACE PROBE. Describe its different modules	10
	and components?	
(b)	What is the scientific principle of SOLID PROPELLANT. Write down the advantages of liquid propellant?	10
Q-8	Write in detail the overall working of Geosynchronous Meteorological	20
	Satellite (GMS)?	
Q- 9	Write notes on any TWO of the following	20
	i. Multistage rocket	
	ii. Atmospheric drag iii. Strategic Defense Initiative (SDI)	

.

A/2016 Part-II Examination: - M.A./M.Sc.

	_	_			_	_															
	1	9	a	11	7	V	n												••	_	
•	•	•		•	•	•	•	•		•	•	•	•	•	•	•	٠	•	•	•	•

Subject: Space Science (Old & New Course) PAPER: V,VI (Geographic Information System) TIME ALLOWED: 3 hrs.

MAX. MARKS: 100

NOTE: Attempt any FIVE questions. All questions carry equal marks. Draw diagrams where necessary.

- 1. What is RELATIONAL DATA MODEL? How spatial data is stored in this model. (5,5,10)Explain the merits of this model.
- 2. Explain how Data Visualization techniques help in understanding of the data as compared to simple tabular information? Discuss the importance of maps and explain different map components?
- 3. What is Land Information System? Discuss the role of GIS in cadastral mapping. Explain the cadastral mapping in Pakistan.
- 4. Explain the key concept of GIS network analysis? How transportation networks, stream networks and utility networks of Pakistan can benefit from GIS based Network Analysis? (5, 15)
- 5. Write a comprehensive note on TWO of the followings:

(10,10)

- (a) Triangulated Irregular Network(TIN)
 - (b) Spatial Decision Support System
 - (c) Components of GIS and working
 - (d) Internet GIS
- 6. What is the GEO-CODING and GEO-REFERENCING in GIS? How do we encode (10,10)locational information with example?
- 7. What are Coordinate Systems? What is the difference between Geographic and Projected Coordinate System? Explain the key concepts of Universal Transverse Mercator (UTM) Projection System?
- 8. What is Urban Planning? Discuss the role of GIS in urban planning. Explain how GIS can play role in urban planning sectors of Pakistan.
- 9. What is the difference between Vertical and Oblique Aerial Photographs? What is Orthophotography? What is Stereoscopic Parallax? How parallax is measured using two (6,3,3,8)overlapping photographs?