

M.A./M.Sc. Part - I Supply - 2020 & Annual - 2021

Paper: I (Real Analysis) Subject: Mathematics (Old & New Course)

NOTE: Attempt any FIVE questions in all selecting at least TWO questions from each section.

SECTION - I

Q#1.

- i. Let $x, y \in \mathbb{R}$ and x > 0. Prove that there exists $m \in \mathbb{Z}^+$ such that mx > y.
 - ii. Let A and B be two non empty bounded subsets of real numbers. Define $A-B=\{a-b,a\in A,b\in B\}.$

(5+7)Prove that Sup(A - B) = Sup A - Inf B.

b. If r is a non-zero rational and $x \neq 0$ is an irrational number. Prove that r - x and (8) r/x both are irrational.

Q # 2.

- a. Let $X := \{x_n\}$ and $Y := \{y_n\}$ be strictly positive sequences and suppose that the limit $\lambda = \lim_{n \to \infty} \frac{x_n}{y_n} \neq 0$ exists. Show that the series $\sum x_n$ and $\sum y_n$ converge or diverge (10) together.
- b. Prove that every Cauchy sequence of real numbers is convergent. Apply this to check the convergence of the sequence $\{x_n\}$ defined by $x_1 := 1, x_2 := 2$ $x_n := \frac{1}{2}(x_{n-2} + x_{n+2}) \text{ for } n > 2.$ (10)

Q#3.

a. Let $A \subseteq \mathbb{R}$ and $f: A \to \mathbb{R}$. Let $c \in \mathbb{R}$ be a cluster point of A. Show that

If $\lim_{x\to c} f(x) = l$, then $\lim_{x\to c} |f(x)| = l$.

If f(x) < g(x), then $\lim_{x \to c} f(x) \le \lim_{x \to c} g(x)$. (10)ii.

b. Show that every continuous function on a closed and bounded interval I attains an (10)absolute maximum and an absolute minimum on I.

Q#4.

- a. Show that a function f is uniformly continuous on an interval (a, b) if and only if it can be defined at the end points a and b such that the extended function is continuous (10)on [a,b].
- b. Evaluate the following:

 $\lim_{x \to c} \frac{x^c - c^x}{x^x - c^c}, c > 0$ $\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x}\right)$

(10)

Q # 5.

- If (a, b) is a point in the domain of a function f(x, y) such that
 - i. f_x , f_y , f_{xy} all exist in certain neighbourhood of (a, b).

ii. f_{xy} is continuous at (a, b).

Show that $f_{yx}(a, b)$ exists and is equal to $f_{xy}(a, b)$. (10)

b. Find the nearest and farthest points on the surface $x^2 + y^2 + z^2 = 1$ from the point (1, 2, 3).

Q#6.

a. If
$$f \in \Re(\alpha)$$
 on $[a, b]$, then show that $|f| \in \Re(\alpha)$ and
$$\left[\int_{a}^{b} f d(\alpha)\right] \leq \int_{a}^{b} |f| d(\alpha).$$
 (10)

b. Show that every continuous function is integrable. Give an example to show that the continuity is only a sufficient condition for integrability not necessary.

Q#7.

a. Show that
$$\int_0^\infty \frac{\sin x}{x} dx$$
 is not absolutely convergent. (10)

b. For what value of n the improper integral $\int_a^b \frac{dx}{(x-x)^n}$ converges? (10)

Q#8.

- a. Prove that the sum as well as the product of two functions of bounded variation is also a function of bounded variation. (10)
- Determine whether the function:

$$f(x) = \begin{cases} x \cos\left(\frac{\pi x}{2}\right), 0 < x \le 1\\ 0, x = 0. \end{cases}$$
 is a function of bounded variation on [0, 1]. (10)

Q#9.

a. If a series $\sum f_n$ converges uniformly to f on [a,b], and each f_n continuous on [a,b], then prove that f is integrable on [a,b], and the series $\sum (\int_a^x f_n dt)$ converges uniformly to $\int_a^x f dt$ for all on $x \in [a, b]$, i.e.

$$\int_{a}^{x} f dt = \sum_{n=1}^{\infty} \left(\int_{a}^{x} f_{n} dt \right), \forall x \in [a, b].$$
(10)

Show that the sequence
$$\{f_n\}$$
, where
$$f_n(x) = \frac{x}{1 + nx^2}, x \text{ being a real number,}$$

converges uniformly on any interval I.

(10)

M.A./M.Sc. Part - I Supply - 2020 & Annual - 2021

Subject: Mathematics (Old & New Course) Paper: Il (Algebra)

Roll No.

Time: 3 Hrs. Marks: 100

NOTE: Attempt any FIVE questions in all selecting at least TWO questions from each section.

SECTION - I

Q. 1							
(a) Show that conjugate elements of a group have the same order.							
(b) Let n be an integer other than 1 and let ω be the complex number $e^{\frac{2\pi i}{n}}$ Show that the set of distinct complex numbers $\{1, \omega, \omega^2,, \omega^{n-1}\}$ forms a multiplicative group.							
Q. 2							
(a) Let H be a subgroup of a group G and N be a normal subgroup of G . Show that $H \cap N$ is a normal subgroup of H .							
(b) Show that the Symmetric group S_3 and the Dihedral group							
$\langle a, b: a^3 = 1 = b^2, bab^{-1} = a^{-1} \rangle$							
are isomorphic.							
Q. 3							
(a) Show that every infinite cyclic group is isomorphic to the cyclic group Z .	[10]						
(b) Write down the elements of the quotient group G/H , where G is the Quaternion group $\langle a,b: a^4=1, a^2=b^2, bab^{-1}=a^{-1}\rangle$ and $H=\{1,a^2\}$. Moreover, identify G/H .	[10]						
Q. 4							
(a) Write down the conjugacy classes of the Symmetric group S_4 .	[10]						
(b) Show that a group of order 56 can not be simple.	[10]						
Q. 5	g 5						
(a) Let G be a group of order $p^n.m$, where p is prime and $p \nmid m$. Show that G has a subgroup of order p^n .	[10]						
(b) Find the normalizer of the subgroup $H = \{1, (1, 2, 3), (1, 3, 2)\}$ of the Symmetric group S_3 .	[10]						

Page 1 of 2

P.T.O.

SECTION - II

Q. 6						
(a) Given an ideal I of the ring R , define the set $C(I)$ by	[10]					
$C(I) = \{r \in R: \ ra - ar \in I, \ \forall a \in R.\}$						
Verify that $C(I)$ forms a subring of R .						
(b) If I_i , $(i = 1, 2,)$ is a collection of ideals of the ring R such that	[10]					
$I_1 \subseteq I_2 \subseteq \subseteq I_n \subseteq,$						
prove that $\bigcup_{i} I_{i}$ is also an ideal of R .						
Q. 7						
(a) Assuming that R is a division ring, show that center of R forms a field.						
(b) Determine if the elements $(1,2,3),(0,4,5),(\frac{1}{2},3,\frac{21}{4})$ in V , the vector space of 3-tuples over \mathbb{R} , are linearly independent over \mathbb{R} .						
Q. 8						
(a) Find all ideals of the ring $Z_2 \times Z_2$.	[10]					
(b) Let R be a commutative ring with unit element and I be a proper ideal of R . Show that I is a prime ideal of R if and only if R/I is an Integral Domain.	[10]					
Q. 9						
(a) Find a matrix P , if possible, for which $P^{-1}AP$ is diagonal, where	[10]					
$A = \begin{pmatrix} 1 & -1 & -1 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$						
(b) Let V be a vector space over field F with $dim(V) = n$. Prove that any	[10]					

M.A./M.Sc. Part - I Supply - 2020 & Annual - 2021

Subject: Mathematics (Old & New Course)

Paper: III (Complex Analysis and Differential Geometry)

Roll No.

NOTE: Attempt any FIVE questions in all selecting at least TWO questions from each section. All Questions carry equal marks.

SECTION - I

- Q1. a) If z is root of a polynomial equation $a_n z^n + a_{n-1} z^n 1 + \cdots + a_1 z^1 + a_0 z^0 = 0$, then show that conjugate of z is also root.
 - b) Use the Cauchy-Riemann equations to prove that if f is analytic in D and its first derivative is constant, then f(z) must be a complex linear function through D.
 - c) Compute:

(07+07+06)

$$\lim_{z \to 1 + \sqrt{3}} \left(\frac{z^2 - 2z + 4}{z - 1 - \sqrt{3}i} \right)$$

Q2. a) Evaluate

(08+08+04)

$$\oint_C \frac{5z+7}{z^2+2z-3} dz, \text{ where } C \text{ is circle } |z-2|=2$$

- b) Find all roots of Sinhz = 0.1
- c) Compute the principal value of complex logarithm for z = 1 + t
- Q3. a) Determine whether the sequence $\left\{\frac{n(1+i^n)}{n+1}\right\}$ converges or diverges.

(07+07+06)

b) Define residue. Find the residue of

$$f(z) = \frac{\cos z e^z}{(z^2 + a^2)^5}$$

- c) State only Moreira's Theorem, Cauchy's Residue Theorem, Cauchy's Inequality Theorem.
- Q4. Evaluate

 $\int_0^\infty \frac{x \sin x}{x^2 + 9} dx , \qquad \int_{-\infty}^{+\infty} \frac{\sin^2 x}{(x^2 + 1)^4} dx , \qquad \int_0^{2\pi} \frac{d\theta}{2 + \cos \theta}$

(07+07+06)

Q5. a) Derive the Cauchy-Riemann equations in polar form.

(08+08+04)

- b) Construct a linear fractional transformation that maps the points 1, i and -1 on the unit circle onto the points -1,0,1 on the real axis.
- c) State why a composition of two entire functions is entire.

SECTION - II

Q6.

(12 + 08)

- a) On the right helicoid given by $x = u\cos \emptyset$, $y = u\sin \emptyset$, $z = c\emptyset$ show that the parametric curves are circular helices and straight lines.
- b) For the curve $x = a \cos u$, $y = 3a \sin u$, $z = a \cos 2u$. Find the curvature and torsion of the curve.

Q7.

(10+10)

- a) If the plane of curvature at every point of a curve passing through a fixed point, show that the curve is plane.
- b) On the surface generated by the binormals of a twisted curve, the position vector of the current point may be expressed $\vec{r} + u\vec{b}$, where \vec{r} and \vec{b} are functions of s. Taking u and s as parameters, calculate the Fundamental Magnitudes and Unit Normal for the surface.

Q8.

(10+10)

- a) At a point of intersection of the paraboloid xy = cz with hyperboloid $x^2 + y^2 z^2 + c^2 = 0$, find the principal radii of the paraboloid.
- b) Show that the locus of centers of curvatures of a curve is an evolute of the curve if and only if the curve is a plane curve. (08+06+06)

Q9.

- a) Derive the Weingarten equations.
- b) Prove that the geodesic curvature vector of any curve is orthogonal to the curve.
- c) Find the geodesic curvature pf the parametric lines on the surface

$$x = a(u + v)$$
, $y = b(u + v)$, $z = uv$

M.A./M.Sc. Part - I Supply - 2020 & Annual - 2021

Paper: IV (Mechanics) Subject: Mathematics (Old & New Course)

•								
•	Roll	No						
	11011	110.					-	
•.								
•				-				
_	Cimo:	A 11	- 11	8.0	-1		40	in
- 7	IMA"	K HP	C .	IWL	41 N	Э.	-14	ľV

Time: 3 Hrs.

NOTE: Attempt any FIVE questions in all selecting at least TWO questions from each section. All questions carry equal marks.

SECTION I

- 1. (A) If $A = 5t^2i + tj t^3k$ and $B = \sin ti \cos tj$, find (a) $\frac{d}{dt}(A \cdot B)$, (b) $\frac{d}{dt}(A \times B)$, (c) $\frac{d}{dt}(A \cdot A)$.
 - (a) $\frac{\partial^2 A}{\partial x^2}$, (b) $\frac{\partial^2 A}{\partial y^2}$, (c) $\frac{\partial^2 A}{\partial x \partial y}$, (d) $\frac{\partial^2 A}{\partial y \partial x}$, for $A = \cos xy i + (3xy 2x) j (3x + 2y) k$.
- 2. (A) Find constants a, b, c so that V = (x + 2y + az) i + (bx 3y z) j + (4x + cy + 2z) kis irrotational. Show that V can be expressed as the gradient of a scalar function ϕ .
 - (B) Give a definition of ∫∫ F · n dS over a surface S in terms of limit of a sum. Suppose that the surface S has projection R on the xy-plane. Show that $\iint_{\sigma} \mathbf{F} \cdot \mathbf{n} \ dS = \iint_{\mathbf{F}} \mathbf{F} \cdot \mathbf{n} \ \frac{dxdy}{|\mathbf{n}\cdot\mathbf{k}|}$.
- 3. (A) Evaluate $\iint_S \mathbf{F} \cdot \mathbf{n} \, dS$, where $\mathbf{F} = z \mathbf{i} + x \mathbf{j} 3y^2 z \mathbf{k}$ and S is the surface of the cylinder $x^2 + y^2 = 16$ included in the first octant between z = 0 and z = 5.
 - (B) State and prove Green's theorem in plane. Use Green's theorem to find (a) $\oint f(x)dx + g(y)dy$ [10+10=20]and (b) $\oint k y dx + h x dy$, where k, h are constants.
- 4. (A) Find the work done in moving a particle in the force field $F = 3x^2 i + (2xz y) j + z k$ along (a) the straight line from (0,0,0) to (2,1,3), (b) the space curve $x=2t^2$, y=t, $z=4t^2-t$ from t=0 to t=1, (c) the curve defined by $x^2=4y$, $3x^3=8z$ from x=0 to x=2.
 - (B) Find the scale factors and the volume element dV in oblate spheroidal coordinates (μ, ν, φ) $x=a\cosh\mu\cos\nu\cos\varphi$, $y=a\cosh\mu\cos\nu\sin\varphi$, $z=a\sinh\mu\sin\nu$, where μ is a non-negative real number and the angle $\nu \in [-\pi/2, \pi/2]$. The azimuthal angle φ can fall anywhere on a full [10+10=20] circle, between $\pm \pi$.
- 5. (A) Find the covariant and contravariant components of a tensor in spherical coordinates $r,\, heta,\, arphi$ if its covariant components in rectangular components are 2xz, x^2y , yz.
 - (B) If A_r^{pq} and B_r^{pq} are tensors, prove that $C_r^{pq} = A_r^{pq} + B_r^{pq}$ and $D_{ru}^{pqst} = A_r^{pq} + B_u^{st}$ are also tensors. [10+10=20]What are their covariant and contravariant ranks?

SECTION II

- 6. (A) A rigid body consists of 3 particles of masses 2,1,4 located at (1,-1,1), (2,0,2), (-1,1,0)respectively. Find the angular momentum of the body if it is rotated about the origin with angular velocity $\omega = 3i - 2j + 4k$.
 - (B) Let r'_{ν} and V'_{ν} be respectively the position vector and velocity of the particle ν relative to the center of mass. Prove that the angular momentum Ω and total kinetic energy T satisfy the relations: (a) $\Omega = \sum_{\nu} m_{\nu} \left(\mathbf{r'}_{\nu} \times \mathbf{V'}_{\nu} \right) + M \left(\overline{\mathbf{r}} \times \overline{\mathbf{V}} \right)$ (b) $T = \frac{1}{2} \sum_{\nu} m_{\nu} \left(\overline{\mathbf{V'}}_{\nu} \right)^{2} + \frac{1}{2} M \left(\overline{\mathbf{V}} \right)^{2}$. [10+10=20]
- 7. (A) Find the moment of inertia of a disc of radius a and mass m about an axis passing through its center and perpendicular to its plane.
 - (B) For a system of N particles, show that the components L_x , L_y and L_z of angular momentum L in terms of moments and products of inertia are: $L_z = \omega_x I_{xx} + \omega_y I_{xy} + \omega_z I_{xz}, \quad L_y = \omega_x I_{xy} + \omega_y I_{yy} + \omega_z I_{yz} \quad \text{and} \quad L_z = \omega_x I_{xz} + \omega_y I_{yz} + \omega_z I_{zz}.$ [10+10=20]
- 8. (A) Find the expression for the kinetic energy of rotation of a rigid body with respect to the principal axes in terms of the Euler angles. Hence, find the result in case $I_1 = I_2$.
 - (B) The moments and products of inertia of a rigid body about the x, y and z axes are $I_{xx} =$ $3, I_{yy} = 10/3, I_{zz} = 8/3, I_{xy} = 4/3, I_{xz} = -4/3, I_{yz} = 0.$ Find the principal moments of inertia [10+10=20]and the directions of principal axes.
- 9. (A) Find a set of three rotation matrices for Euler angles and express the components of angular velocity in terms of these angles.
 - (B) Using Euler's equations of motion for a rigid body having zero external torque show that $I_1\omega_1^2 + I_2\omega_2^2 + I_3\omega_3^2$ and $I_1^2\omega_1^2 + I_2^2\omega_2^2 + I_3^2\omega_3^2$ are conserved quantities. What do they [10+10=20] represent?

M.A./M.Sc. Part - I Supply - 2020 & Annual - 2021

Subject: Mathematics (Old & New Course) Paper: V (Topology and Functional Analysis)

Marks: 100

NOTE: Attempt any FIVE questions in all selecting at least TWO questions from each section.

SECTION-I

- Q.1 Let $X = \mathbb{R}$, $\mathfrak{I} = U$ sual Topology. Find the interior, closure, exterior, derived set and (10)frontier of the set $A = \left\{ \frac{1}{n} \mid n \in \mathbb{Z}^+ \right\}$. Is A dense in X?
 - (b) Let $X = \{a,b,c,d,e\}, \Omega = \{\{a,b\},\{b,c\},\{c,d\},\{d,e\},\{a,e\}\}$. Find the topology (10)generated by Ω . Is X with this topology normal?
- **Q.2** (a) Show that every Hausdorff space is T_1 – space but converse is not true. (10)
 - Show that a regular Lindelöf space is normal. (10)
- Q.3 Let X be Hausdorff space, C a compact subset of X and x an element of X which (10)is not in C. Then show that there are disjoint open sets U, and V, in X such that $x \in U_x$ and $C \subseteq V_x$.
 - Show that a closed subset of a compact space is compact. (b) (10)
- **Q.4** Prove that image of a connected space under a continuous map is connected. (10)
 - (b) Show that product of connected spaces is connected. (10)

SECTION-II

- (a) (10)Prove that the space l^{∞} is complete metric space but not separable.
 - Let X be the set of all continuous real-valued functions on I = [0,1], and let (10)

$$d(x,y) = \int_{0}^{1} |x(t) - y(t)| dt.$$

Show that (X,d) is not complete.

- **Q.6** If (X,d) is complete, show that (X,\tilde{d}) is complete, where $\tilde{d}=d/(1+d)$. (10)
 - (b) State and prove Cantor's intersection theorem. (10)
- **Q.7** (a) Show that equivalent norms on a vector space X induce the same topology for X. (10)
 - (10)Show that the dual space of l^1 is l^{∞} .
- Consider a bounded linear operator $T:D(T)\to Y$, where domain of T i.e. D(T) lies (10)Q.8 in a normed space X and Y be a Banach space. Show that T has an extension (a bounded linear operator) $\tilde{T}: \overline{D(T)} \to Y$ with norm $||\tilde{T}|| = ||T||$.
 - Let N be a normed space and $f: X \to Y$ be a linear functional. Let x_0 be any fixed point of $N \setminus Ker f$ then show that every element xof N has a unique representation of the form $x = ax_0 + y, a \in F$, $y \in Ker f$.
- (10)Q.9 Show that the space l^p is an inner product space iff p = 2.
 - For any inner product space X there exists a Hilbert space H and an isomorphism (10)A from X onto a dense subspace $W \subset H$. The space H is unique except for isomorphisms.